Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 32(4): 280-299, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35852833

RESUMO

RNase H1-dependent phosphorothioate oligonucleotides (PS-ASOs) have been developed to treat various diseases through specific degradation of target RNAs. Although many factors or features of RNA and PS-ASOs have been demonstrated to affect antisense activity of PS-ASOs, little is known regarding the roles of RNase H1-associated proteins in PS-ASO performance. In this study, we report that two nucleolar proteins, NAT10 and DDX21, interact with RNase H1 and affect the potency and safety of PS-ASOs. The interactions of these two proteins with RNase H1 were determined using BioID proximity labeling in cells and confirmed biochemically. Reduction of NAT10 and DDX21 decreased PS-ASO activity in cells, and purified NAT10 and DDX21 proteins enhanced RNase H1 cleavage rates, indicating that these two proteins facilitate RNase H1 endoribonuclease activity. Consistently, reduction of these proteins increased the levels of R-loops, and impaired pre-rRNA processing. In addition, reduction of the two proteins increased the cytotoxicity of toxic PS-ASOs, and treatment of toxic PS-ASOs also altered the localization of these proteins. Together, this study shows for the first time that NAT10 and DDX21 interact with RNase H1 protein and enhance its enzymatic activity, contributing to the potency and safety of PS-ASOs.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos Fosforotioatos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/genética , Oligonucleotídeos Fosforotioatos/metabolismo , Oligonucleotídeos Fosforotioatos/farmacologia , Precursores de RNA , Ribonuclease H/genética , Ribonuclease H/metabolismo
2.
Nucleic Acids Res ; 50(14): 8107-8126, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848907

RESUMO

Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary-in part-as a function of 2'modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO-protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.


Assuntos
Imunidade Inata , Oligonucleotídeos Antissenso , Oligonucleotídeos Fosforotioatos , Receptor Toll-Like 9 , Calgranulina A , Endocitose , Proteína HMGB1 , Humanos , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Proteínas , Receptor Toll-Like 9/metabolismo
3.
Nucleic Acids Res ; 49(16): 9026-9041, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417625

RESUMO

The PS modification enhances the nuclease stability and protein binding properties of gapmer antisense oligonucleotides (ASOs) and is one of very few modifications that support RNaseH1 activity. We evaluated the effect of introducing stereorandom and chiral mesyl-phosphoramidate (MsPA) linkages in the DNA gap and flanks of gapmer PS ASOs and characterized the effect of these linkages on RNA-binding, nuclease stability, protein binding, pro-inflammatory profile, antisense activity and toxicity in cells and in mice. We show that all PS linkages in a gapmer ASO can be replaced with MsPA without compromising chemical stability and RNA binding affinity but these designs reduced activity. However, replacing up to 5 PS in the gap with MsPA was well tolerated and replacing specific PS linkages at appropriate locations was able to greatly reduce both immune stimulation and cytotoxicity. The improved nuclease stability of MsPA over PS translated to significant improvement in the duration of ASO action in mice which was comparable to that of enhanced stabilized siRNA designs. Our work highlights the combination of PS and MsPA linkages as a next generation chemical platform for identifying ASO drugs with improved potency and therapeutic index, reduced pro-inflammatory effects and extended duration of effect.


Assuntos
Oligonucleotídeos Antissenso/síntese química , Índice Terapêutico do Medicamento , Animais , Células HEK293 , Células HeLa , Humanos , Fígado/metabolismo , Masculino , Mesilatos/química , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/toxicidade , Fosforamidas/química , Ligação Proteica , Distribuição Tecidual
4.
Nucleic Acids Res ; 49(5): 2721-2739, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577678

RESUMO

We recently found that toxic PS-ASOs can cause P54nrb and PSF nucleolar mislocalization in an RNase H1-dependent manner. To better understand the underlying mechanisms of these observations, here we utilize different biochemical approaches to demonstrate that PS-ASO binding can alter the conformations of the bound proteins, as illustrated using recombinant RNase H1, P54nrb, PSF proteins and various isolated domains. While, in general, binding of PS-ASOs or ASO/RNA duplexes stabilizes the conformations of these proteins, PS-ASO binding may also cause the unfolding of RNase H1, including both the hybrid binding domain and the catalytic domain. The extent of conformational change correlates with the binding affinity of PS-ASOs to the proteins. Consequently, PS-ASO binding to RNase H1 induces the interaction of RNase H1 with P54nrb or PSF in a 2'-modification and sequence dependent manner, and toxic PS-ASOs tend to induce more interactions than non-toxic PS-ASOs. PS-ASO binding also enhances the interaction between P54nrb and PSF. However, the interaction between RNase H1 and P32 protein can be disrupted upon binding of PS-ASOs. Together, these results suggest that stronger binding of PS-ASOs can cause greater conformational changes of the bound proteins, subsequently affecting protein-protein interactions. These observations thus provide deeper understanding of the molecular basis of PS-ASO-induced protein mislocalization or degradation observed in cells and advance our understanding of why some PS-ASOs are cytotoxic.


Assuntos
Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Ribonuclease H/metabolismo , Linhagem Celular , Quimotripsina , Humanos , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , Ligação Proteica , Conformação Proteica , Sinais Direcionadores de Proteínas , RNA/metabolismo , Ribonuclease H/química
5.
J Am Chem Soc ; 142(35): 14754-14771, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786803

RESUMO

Recent progress in understanding phosphorothioate antisense oligonucleotide (PS-ASO) interactions with proteins has revealed that proteins play deterministic roles in the absorption, distribution, cellular uptake, subcellular distribution, molecular mechanisms of action, and toxicity of PS-ASOs. Similarly, such interactions can alter the fates of many intracellular proteins. These and other advances have opened new avenues for the medicinal chemistry of PS-ASOs and research on all elements of the molecular pharmacology of these molecules. These advances have recently been reviewed. In this Perspective article, we summarize some of those learnings, the general principles that have emerged, and a few of the exciting new questions that can now be addressed.


Assuntos
Oligonucleotídeos Fosforotioatos/química , Proteínas/química , Química Farmacêutica , Humanos , Oligonucleotídeos Fosforotioatos/metabolismo , Proteínas/metabolismo
6.
Nucleic Acids Res ; 48(10): 5235-5253, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32356888

RESUMO

Antisense oligonucleotides (ASOs) interact with target RNAs via hybridization to modulate gene expression through different mechanisms. ASO therapeutics are chemically modified and include phosphorothioate (PS) backbone modifications and different ribose and base modifications to improve pharmacological properties. Modified PS ASOs display better binding affinity to the target RNAs and increased binding to proteins. Moreover, PS ASO protein interactions can affect many aspects of their performance, including distribution and tissue delivery, cellular uptake, intracellular trafficking, potency and toxicity. In this review, we summarize recent progress in understanding PS ASO protein interactions, highlighting the proteins with which PS ASOs interact, the influence of PS ASO protein interactions on ASO performance, and the structure activity relationships of PS ASO modification and protein interactions. A detailed understanding of these interactions can aid in the design of safer and more potent ASO drugs, as illustrated by recent findings that altering ASO chemical modifications dramatically improves therapeutic index.


Assuntos
Oligonucleotídeos Fosforotioatos/química , Proteínas/química , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Ligantes , Oligonucleotídeos Fosforotioatos/metabolismo , Oligonucleotídeos Fosforotioatos/farmacologia , Oligonucleotídeos Fosforotioatos/toxicidade , Ligação Proteica , Domínios Proteicos , Proteínas/metabolismo , Proteínas/toxicidade , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
7.
J Am Chem Soc ; 142(21): 9661-9674, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32374993

RESUMO

The activity of PS-ASOs is strongly influenced by association with both inter- and intracellular proteins. The sequence, chemical nature, and structure of the ASO can have profound influences on the interaction of PS-ASOs with specific proteins. A more thorough understanding of how these pharmacological agents interact with various proteins and how chemical modifications, sequence, and structure influence interactions with proteins is needed to inform future ASO design efforts. To better understand the chemistry of PS-ASO interactions, we have focused on human positive cofactor 4 (PC4). Although several studies have investigated the in vitro binding properties of PC4 with endogenous nucleic acids, little is known about the chemistry of interaction of PS-ASOs with this protein. Here we examine in detail the impact of ASO backbone chemistry, 2'-modifications, and buffer environment on the binding affinity of PC4. In addition, using site-directed mutagenesis, we identify those amino acids that are specifically required for ASO binding interactions, and by substitution of abasic nucleotides we identify the positions on the ASO that most strongly influence affinity for PC4. Finally, to confirm that the interactions observed in vitro are biologically relevant, we use a recently developed complementation reporter system to evaluate the kinetics and subcellular localization of the interaction of ASO and PC4 in live cells.


Assuntos
Proteínas de Ligação a DNA/química , Oligonucleotídeos Antissenso/química , Fatores de Transcrição/química , Células HEK293 , Células HeLa , Humanos , Cinética
8.
J Am Chem Soc ; 142(16): 7456-7468, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32202774

RESUMO

The phosphorothioate backbone modification (PS) is one of the most widely used chemical modifications for enhancing the drug-like properties of nucleic acid-based drugs, including antisense oligonucleotides (ASOs). PS-modified nucleic acid therapeutics show improved metabolic stability from nuclease-mediated degradation and exhibit enhanced interactions with plasma, cell-surface, and intracellular proteins, which facilitates their tissue distribution and cellular uptake in animals. However, little is known about the structural basis of the interactions of PS nucleic acids with proteins. Here, we report a crystal structure of the DNA-binding domain of a model ASO-binding protein PC4, in complex with a full PS 2'-OMe DNA gapmer ASO. To our knowledge this is the first structure of a complex between a protein and fully PS nucleic acid. Each PC4 dimer comprises two DNA-binding interfaces. In the structure one interface binds the 5'-terminal 2'-OMe PS flank of the ASO, while the other interface binds the regular PS DNA central part in the opposite polarity. As a result, the ASO forms a hairpin-like structure. ASO binding also induces the formation of a dimer of dimers of PC4, which is stabilized by base pairing between homologous regions of the ASOs bound by each dimer of PC4. The protein interacts with the PS nucleic acid through a network of electrostatic and hydrophobic interactions, which provides insights into the origins for the enhanced affinity of PS for proteins. The importance of these contacts was further confirmed in a NanoBRET binding assay using a Nano luciferase tagged PC4 acting as the BRET donor, to a fluorescently conjugated ASO acting as the BRET acceptor. Overall, our results provide insights into the molecular forces that govern the interactions of PS ASOs with cellular proteins and provide a potential model for how these interactions can template protein-protein interactions causative of cellular toxicity.


Assuntos
Ácidos Nucleicos/metabolismo , Oligonucleotídeos Fosforotioatos/química , Proteínas/metabolismo , Humanos
9.
Nucleic Acids Res ; 48(3): 1372-1391, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31840180

RESUMO

Release of phosphorothioate antisense oligonucleotides (PS-ASOs) from late endosomes (LEs) is a rate-limiting step and a poorly defined process for productive intracellular ASO drug delivery. Here, we examined the role of Golgi-endosome transport, specifically M6PR shuttling mediated by GCC2, in PS-ASO trafficking and activity. We found that reduction in cellular levels of GCC2 or M6PR impaired PS-ASO release from endosomes and decreased PS-ASO activity in human cells. GCC2 relocated to LEs upon PS-ASO treatment, and M6PR also co-localized with PS-ASOs in LEs or on LE membranes. These proteins act through the same pathway to influence PS-ASO activity, with GCC2 action preceding that of M6PR. Our data indicate that M6PR binds PS-ASOs and facilitates their vesicular escape. The co-localization of M6PR and of GCC2 with ASOs is influenced by the PS modifications, which have been shown to enhance the affinity of ASOs for proteins, suggesting that localization of these proteins to LEs is mediated by ASO-protein interactions. Reduction of M6PR levels also decreased PS-ASO activity in mouse cells and in livers of mice treated subcutaneously with PS-ASO, indicating a conserved mechanism. Together, these results demonstrate that the transport machinery between LE and Golgi facilitates PS-ASO release.


Assuntos
Endossomos/genética , Proteínas da Matriz do Complexo de Golgi/genética , Oligonucleotídeos Antissenso/genética , Receptor IGF Tipo 2/genética , Animais , Endocitose/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Células HeLa , Humanos , Camundongos , Oligonucleotídeos Fosforotioatos/genética , Transporte Proteico/genética , Receptor IGF Tipo 2/metabolismo
10.
Nucleic Acids Res ; 47(20): 10865-10880, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31495875

RESUMO

The rapid RNase H1-dependent mislocalization of heterodimer proteins P54nrb and PSF to nucleoli is an early event in the pathway that explains the effects of most toxic phosphorothioate ASOs (PS-ASOs). Using a recently developed NanoLuciferace (NLuc)-based structural complementation reporter system which allows us to observe ASO/protein interactions in real time in live cells, we have determined that safe and toxic PS-ASOs associate with these proteins with kinetics and impact on subcellular localization that differ. Toxic PS-ASOs interact in a complex that includes RNase H1, P54nrb and PSF; but RNase H1/P54nrb complexes were observed in only the cells treated with toxic, but not safe PS-ASOs. In addition, experiments performed in vitro suggest that RNA is also a required component of the complex. The protein-protein interaction between P54nrb and RNase H1 requires the spacer region of RNAse H1, while the P54nrb core domains are required for association with RNase H1. In addition, we have determined that PS-ASOs bind P54nrb via RRM1 and RRM2, while they bind RNase H1 primarily via the hybrid binding domain, however catalytic domain interactions also contribute to overall affinity. These ASO-protein interactions are highly influenced by the chemistry of the PS-ASO binding environment, however little correlation between affinity for specific proteins and PS-ASO toxicity was observed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease H/metabolismo , Domínio Catalítico , Nucléolo Celular/metabolismo , Sobrevivência Celular , Proteínas de Ligação a DNA/química , Células HEK293 , Células HeLa , Humanos , Cinética , Ligação Proteica , Proteínas de Ligação a RNA/química , Ribonuclease H/química
11.
Nucleic Acids Res ; 47(13): 6900-6916, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31165876

RESUMO

Antisense technology can reduce gene expression via the RNase H1 or RISC pathways and can increase gene expression through modulation of splicing or translation. Here, we demonstrate that antisense oligonucleotides (ASOs) can reduce mRNA levels by acting through the no-go decay pathway. Phosphorothioate ASOs fully modified with 2'-O-methoxyethyl decreased mRNA levels when targeted to coding regions of mRNAs in a translation-dependent, RNase H1-independent manner. The ASOs that activated this decay pathway hybridized near the 3' end of the coding regions. Although some ASOs induced nonsense-mediated decay, others reduced mRNA levels through the no-go decay pathway, since depletion of PELO/HBS1L, proteins required for no-go decay pathway activity, decreased the activities of these ASOs. ASO length and chemical modification influenced the efficacy of these reagents. This non-gapmer ASO-induced mRNA reduction was observed for different transcripts and in different cell lines. Thus, our study identifies a new mechanism by which mRNAs can be degraded using ASOs, adding a new antisense approach to modulation of gene expression. It also helps explain why some fully modified ASOs cause RNA target to be reduced despite being unable to serve as substrates for RNase H1.


Assuntos
Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Fosforotioatos/farmacologia , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Endonucleases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Temperatura Alta , Camundongos , Proteínas Nucleares/metabolismo , Desnaturação de Ácido Nucleico , Fosfoproteínas/genética , Biossíntese de Proteínas , Interferência de RNA , Splicing de RNA , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/genética
12.
Nat Biotechnol ; 37(6): 640-650, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036929

RESUMO

The molecular mechanisms of toxicity of chemically modified phosphorothioate antisense oligonucleotides (PS-ASOs) are not fully understood. Here, we report that toxic gapmer PS-ASOs containing modifications such as constrained ethyl (cEt), locked nucleic acid (LNA) and 2'-O-methoxyethyl (2'-MOE) bind many cellular proteins with high avidity, altering their function, localization and stability. We show that RNase H1-dependent delocalization of paraspeckle proteins to nucleoli is an early event in PS-ASO toxicity, followed by nucleolar stress, p53 activation and apoptotic cell death. Introduction of a single 2'-O-methyl (2'-OMe) modification at gap position 2 reduced protein-binding, substantially decreasing hepatotoxicity and improving the therapeutic index with minimal impairment of antisense activity. We validated the ability of this modification to generally mitigate PS-ASO toxicity with more than 300 sequences. Our findings will guide the design of PS-ASOs with optimal therapeutic profiles.


Assuntos
Oligonucleotídeos Antissenso/química , Oligonucleotídeos/química , Oligonucleotídeos Fosforotioatos/química , Humanos , Fígado/efeitos dos fármacos , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Fosforotioatos/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Ribonuclease H/química , Ribonuclease H/genética , Índice Terapêutico
13.
Nucleic Acids Res ; 46(19): 10225-10245, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30239896

RESUMO

RNase H1-dependent, phosphorothioate-modified antisense oligonucleotides (PS-ASOs) can enter cells through endocytic pathways and need to be released from the membrane-enclosed organelles, a limiting step for antisense activity. Accumulating evidence has suggested that productive PS-ASO release mainly occurs from late endosomes (LEs). However, how PS-ASOs escape from LEs is not well understood. Here, we report that upon PS-ASO incubation, COPII vesicles, normally involved in ER-Golgi transport, can re-locate to PS-ASO-containing LEs. Reduction of COPII coat proteins significantly decreased PS-ASO activity, without affecting the levels of PS-ASO uptake and early-to-late endosome transport, but caused slower PS-ASO release from LEs. COPII co-localization with PS-ASOs at LEs does not require de novo assembly of COPII at ER. Interestingly, reduction of STX5 and P115, proteins involved in tethering and fusion of COPII vesicles with Golgi membranes, impaired COPII re-localization to LEs and decreased PS-ASO activity. STX5 can re-locate to LEs upon PS-ASO incubation, can bind PS-ASOs, and the binding appears to be required for this pathway. Our study reveals a novel release pathway in which PS-ASO incubation causes LE re-localization of STX5, which mediates the recruitment of COPII vesicles to LEs to facilitate endosomal PS-ASO release, and identifies another key PS-ASO binding protein.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Endocitose/fisiologia , Endossomos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Vesículas Transportadoras/metabolismo , Células Cultivadas , Células HeLa , Células Hep G2 , Humanos , Transdução de Sinais
14.
Nucleic Acids Res ; 46(7): 3579-3594, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514240

RESUMO

Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs.


Assuntos
Endocitose/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Transporte Biológico/genética , Membrana Celular/química , Membrana Celular/genética , Endossomos/química , Endossomos/genética , Fator de Crescimento Epidérmico/genética , Receptores ErbB/química , Receptores ErbB/genética , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , Ligação Proteica , Transdução de Sinais , Transfecção
15.
Nucleic Acids Res ; 46(5): 2204-2217, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29390093

RESUMO

We reported previously that a 2' fluoro-modified (2' F) phosphorothioate (PS) antisense oligonucleotides (ASOs) with 5-10-5 gapmer configuration interacted with proteins from Drosophila behavior/human splicing (DBHS) family with higher affinity than PS-ASOs modified with 2'-O-(2-methoxyethyl) (2' MOE) or 2',4'-constrained 2'-O-ethyl (cEt) did. Rapid degradation of these proteins and cytotoxicity were observed in cells treated with 2' F PS-ASO. Here, we report that 2' F gapmer PS-ASOs of different sequences caused reduction in levels of DBHS proteins and hepatotoxicity in mice. 2' F PS-ASOs induced activation of the P53 pathway and downregulation of metabolic pathways. Altered levels of RNA and protein markers for hepatotoxicity, liver necrosis, and apoptosis were observed as early as 24 to 48 hours after a single administration of the 2' F PS-ASO. The observed effects were not likely due to the hybridization-dependent RNase H1 cleavage of on- or potential off-target RNAs, or due to potential toxicity of 2' F nucleoside metabolites. Instead, we found that 2' F PS-ASO associated with more intra-cellular proteins including proteins from DBHS family. Our results suggest that protein-binding correlates positively with the 2' F modification-dependent loss of DBHS proteins and the toxicity of gapmer 2' F PS-ASO in vivo.


Assuntos
Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oligonucleotídeos Antissenso/toxicidade , Oligonucleotídeos Fosforotioatos/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fator de Processamento Associado a PTB/genética , Fator de Processamento Associado a PTB/metabolismo , Oligonucleotídeos Fosforotioatos/genética , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma/genética
16.
Nat Biotechnol ; 35(3): 230-237, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28244996

RESUMO

Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.


Assuntos
Terapia Genética/métodos , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Frações Subcelulares/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Oligonucleotídeos Antissenso/genética , Relação Estrutura-Atividade
17.
PLoS One ; 11(8): e0161930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27571227

RESUMO

Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells.


Assuntos
Bioensaio/métodos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Replicação do DNA/fisiologia , Células HeLa , Humanos , Ligação Proteica
18.
Nat Biotechnol ; 34(8): 875-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27398791

RESUMO

Increasing the levels of therapeutic proteins in vivo remains challenging. Antisense oligonucleotides (ASOs) are often used to downregulate gene expression or to modify RNA splicing, but antisense technology has not previously been used to directly increase the production of selected proteins. Here we used a class of modified ASOs that bind to mRNA sequences in upstream open reading frames (uORFs) to specifically increase the amounts of protein translated from a downstream primary ORF (pORF). Using ASO treatment, we increased the amount of proteins expressed from four genes by 30-150% in a dose-dependent manner in both human and mouse cells. Notably, systemic treatment of mice with ASO resulted in an ∼80% protein increase of LRPPRC. The ASO-mediated increase in protein expression was sequence-specific, occurred at the level of translation and was dependent on helicase activity. We also found that the type of RNA modification and the position of modified nucleotides in ASOs affected translation of a pORF. ASOs are a useful class of therapeutic agents with broad utility.


Assuntos
Melhoramento Genético/métodos , Oligonucleotídeos Antissenso/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Engenharia de Proteínas/métodos , Regulação da Expressão Gênica/genética , Marcação de Genes/métodos
19.
J Clin Invest ; 126(4): 1592-602, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26999604

RESUMO

The alternatively spliced products of LMNA, lamin C and prelamin A (the precursor to lamin A), are produced in similar amounts in most tissues and have largely redundant functions. This redundancy suggests that diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that are caused by prelamin A-specific mutations could be treated by shifting the output of LMNA more toward lamin C. Here, we investigated mechanisms that regulate LMNA mRNA alternative splicing and assessed the feasibility of reducing prelamin A expression in vivo. We identified an exon 11 antisense oligonucleotide (ASO) that increased lamin C production at the expense of prelamin A when transfected into mouse and human fibroblasts. The same ASO also reduced the expression of progerin, the mutant prelamin A protein in HGPS, in fibroblasts derived from patients with HGPS. Mechanistic studies revealed that the exon 11 sequences contain binding sites for serine/arginine-rich splicing factor 2 (SRSF2), and SRSF2 knockdown lowered lamin A production in cells and in murine tissues. Moreover, administration of the exon 11 ASO reduced lamin A expression in wild-type mice and progerin expression in an HGPS mouse model. Together, these studies identify ASO-mediated reduction of prelamin A as a potential strategy to treat prelamin A-specific diseases.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Lamina Tipo A/biossíntese , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Progéria/tratamento farmacológico , Progéria/metabolismo , RNA Mensageiro/metabolismo , Animais , Modelos Animais de Doenças , Éxons , Técnicas de Silenciamento de Genes , Humanos , Lamina Tipo A/genética , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleotídeos Antissenso/genética , Progéria/genética , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina
20.
Nucleic Acids Res ; 43(18): 8955-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26384424

RESUMO

Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation, however kinetic parameters for ASO-mediated targeting and subsequent cleavage and degradation of RNA in living cells are poorly understood. In this manuscript we use an inducible minigene system to determine the time course of ASO activity in the cell. Estimates of the time required for the ASO to enter and traverse the cell, scan the target mRNA, bind the cognate site, recruit RNase H1 and initiate cleavage, are presented in the context of transcription and mRNA processing rates. Data are also presented which indicate that rates for RNase H1-dependent ASO-mediated degradation of the targeted RNAs are different for nuclear-retained versus RNAs exported to the cytoplasm and that the level of RNase H1 in the cell and cellular compartments is limiting to the rate of ASO activity. In both cellular compartments RNase H1 ASOs essentially double the endogenous rates of clearance of the target RNA. Overexpression of Escherichia coli RNase H1 or the presence of multiple cognate sites each further increase the rate of target RNA degradation.


Assuntos
Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease H/metabolismo , Cinética , Clivagem do RNA , Processamento Pós-Transcricional do RNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...